
www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Seminar

Software Product Lines
and

pure::variants

Dr. Danilo Beuche
danilo.beuche@pure-systems.com

www.pure-systems.comall you need for product lines Slide 2© pure-systems GmbH 2007

Who Needs Product Lines?

www.pure-systems.comall you need for product lines Slide 3© pure-systems GmbH 2007

About pure-systems

● Business Areas

– Development Tools

– Software Development

– Consulting & Professional Services

– Training

● Customer

– Mainly embedded systems manufacturers

● Founded 2001, Location Magdeburg, Germany

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Presenter

● Danilo Beuche
– 2001-*: managing director pure-systems GmbH, Magdeburg, Germany

● consulting in embedded software development and product line development

– 1997-2003: Research assistant/PhD Student University Magdeburg,
Germany

● PhD on Software families for Embedded Systems
● operating systems group, focus embedded operating system families

– 1995-1997: Research associate GMD FIRST Berlin, Germany
● parallel operating systems group, focus on families

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Introduction to
Software Product Lines

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Terminology

● Software Product Line terminology is used throughout the seminar:

– Problem Space vs. Solution Space

– Domain Engineering vs. Application Engineering

– Variant vs. Version

– Variation Point

– (Core) Assets

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Application Engineering

Domain Engineering

Terminology (2)

PL Properties and Relations

Solution Space

Single Problem Single Solution

Problem Space
 Assets

Production PlanProduct Properties

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Application Engineering

Domain Engineering

Terminology (3)

Domain Expert

Solution Space

Single Problem Single Solution

Problem Space
 PL Architect/Developer

Application DeveloperApplication Analyst

PL Expert

www.pure-systems.comall you need for product lines Slide 9© pure-systems GmbH 2007

The Version Hell

Product 1 Product 2 Product 3 Product 4

Component A 1.0

1.1

1.3

2.0

Component B

Component C

1.0

1.2

2.1

2.4

1.0

1.0

2.3

4.0

www.pure-systems.comall you need for product lines Slide 10© pure-systems GmbH 2007

Orthogonality of Variants and Versions

Version / Time

Variants

v1.0 v1.2 v1.3 v1.4 v2.0 v2.2

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Terminology (4): Version and Variants

● Version (also Revision)

– Versions of an object represent the same object at different times. The
object may or may not have changed in different versions.

● Variant

– Variants represent objects with different user-distinguishable properties.
They are derived from a common base object .

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Terminology (5): Variant vs. Version

● Variants may be represented by versions

● Variants may be derived from a single version

● A single variant may over time be derived from different versions of
an object

u In single system development variant and version are often used
interchangeably, when variants are exclusively represented by
changes over time and are thus always coupled to a specific
version.

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Terminology (6): Variation Point

● Variation Points
– identify all places where members of a product line may differ from each

other

– exist in problem and solution space

– have a binding time such as compile time, link time or run time.

– Example:
● Problem space:

“The car has either two or four passenger doors”
● Solution space:

#ifdef / #else / #endif encapsulated code fragments

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Quick Look at SPL-Development

Essential SPLD Activities (SEI SPLP Framework)

Taken from SPLPFW 4.2, copyright SEI CMU.

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Quick Look at SPL-Development

Core Asset Development I/O (SEI SPLP Framework)

Taken from SPLPFW 4.2, copyright SEI CMU.

www.pure-systems.comall you need for product lines Slide 16© pure-systems GmbH 2007

It is all about Economics

Parnas (1976):

„We consider a set of programs to constitute a family,

whenever it is worthwhile to study programs from the set

by first studying the common properties and then

determining the special properties of the individual family

members.“

www.pure-systems.comall you need for product lines Slide 17© pure-systems GmbH 2007

Reuse

www.pure-systems.comall you need for product lines Slide 18© pure-systems GmbH 2007

Reuse Technology – Challenges

● no first level concept of variation points available

● variations cross-cut all levels

● low degree of formalization

● shared responsibility between stakeholders with very different
perspectives

www.pure-systems.comall you need for product lines Slide 19© pure-systems GmbH 2007

Reuse Process - When and Why Reuse Fails (1)

● product development done by engineering companies

● they sell projects typically based on the expected effort

● creating and maintaining reusable assets is more expensive than
one-of-a-kind development style

● technology mismatch for given domain/organisation

● not enough education of stakeholders

● highly parallel development of similar functionality in separate project teams

www.pure-systems.comall you need for product lines Slide 20© pure-systems GmbH 2007

Reuse Process - When and Why Reuse Fails (2)

● development of unused/unusable assets

● application team does not use components developed by a specific core asset
team

● products do not meet acceptance criteria of customers

● management does not support development organization well
enough

● projects with a high degree of reuse tend to cost more in the beginning but
managers want a cheap start

www.pure-systems.comall you need for product lines Slide 21© pure-systems GmbH 2007

Reuse - Key Issues

● Economics

● Education

● Communication and Coordination

● Technology

www.pure-systems.comall you need for product lines Slide 22© pure-systems GmbH 2007

Variant and Variability Managment

www.pure-systems.comall you need for product lines Slide 23© pure-systems GmbH 2007

Variant and Variability Management

● takes care of description and maintenance of

– variation point information for a product line (variability)

– instances of the product line (variants)

● closes the gap between reusable assets and instances of them

● is all about dealing with complexity in various areas

www.pure-systems.comall you need for product lines Slide 24© pure-systems GmbH 2007

Variant and Variability Management

● ... is complex because

– variability grows more or less exponentially

● each option doubles the number of potential variants

● each group of n alternatives still creates n-times more variants

– it has to deal with anticipated and unanticipated variation requests

– involves more stakeholders compared to single system development

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Variant and Varibility Management
with

www.pure-systems.comall you need for product lines Slide 26© pure-systems GmbH 2007

ALM and Variant Management

Variant Management with pure::variants

Requirements
and Analysis

Caliber RM

RequisitePro

DOORS

Requirements

Design and
Development

Together

Softw. Architect

TAU/Rhapsody

Configuration
Management

StarTeam

ClearCase

Synergy

Source

Portfolio
Management

Tempo

Portf. Manager

Focal Point

Portfolios

Quality
Management

Silk

ClearQuest

Tester/Change

Test Managem.

Application Lifecycle Management (ALM)

Borland

IBM

Telelogic

MKS

pure-systems

www.pure-systems.comall you need for product lines Slide 27© pure-systems GmbH 2007

pure::variants

Integration into Development Processes
• keep and use existing code base and tool environment

• version management support

• independent from technology

Efficient Variant Modelling
• accumulation of configuration knowledge

• validation of variant configurations

Automated and Resource-Efficient Variant Generation
• source code packaging (e.g. from version management repositories)

• generation of code, documents, bills of material

www.pure-systems.comall you need for product lines Slide 28© pure-systems GmbH 2007

Production Plan

Feature Model Family Model

Variant Model Variant Realization

Collection of Features and Relations Collection of Family Elements

Desired/Required Features

Problem Space

Single Problem

Solution Space

Single Solution

Development with Variant Management

Variant

www.pure-systems.comall you need for product lines Slide 29© pure-systems GmbH 2007

Family Model
collection of artifacts
(code, components,

parts, documentations)
(realization of a product line)

Feature Model
definitions of requirements,

properties and relations.

(design of a product line)

Workflow with pure::variants

Transformation = Generation of Variants

Configuration = Selection of Constituent Parts

Link to

Feature Model

3

4

1 2

www.pure-systems.comall you need for product lines Slide 30© pure-systems GmbH 2007

Example Weather Station: Product Variants

Variant Feature

Thermometer: Display, Temperature

Indoor: Display, Temperature, Pressure

Outdoor: Display, Temperature, Pressure, Wind

Deluxe: + PC Data Recording

Internet Edition: + TCP/IP

PC Interfaces: + Serial Interface RS232

 + USB Interface

www.pure-systems.comall you need for product lines Slide 31© pure-systems GmbH 2007

PCConnection
PCConnection

Conflicts: 'Trace'

Problem Space – Feature Model

partial view

WeatherMon

DebuggingSupport

Output

Trace

Display

RS232Line

USBLine

www.pure-systems.comall you need for product lines Slide 32© pure-systems GmbH 2007

Example Weather Station: Hardware

Wind

Temp

RS232

Pressure

USB

µController (AVR)
4kB RAM, 8kB Flash

UDP/IP or Plain Text over USB/RS232

Sensors

I2C

Display

www.pure-systems.comall you need for product lines Slide 33© pure-systems GmbH 2007

Solution Space – Family Model

partial view

hasFeature('Trace') and conflictsFeature('PCConnection')

hasFeature('Display')

hasFeature('RS232') or hasFeature('Trace')

hasFeature('USBLine')

hasFeature('Trace')
hasFeature('PCConnection')

WeatherStationSolutions

PCLine

Trace

Display

ps:class: RS232Line

ps:class: USBLine

www.pure-systems.comall you need for product lines Slide 34© pure-systems GmbH 2007

L I V E - D E M O

at work

www.pure-systems.comall you need for product lines Slide 35© pure-systems GmbH 2007

Product Variants

pure::variants Professional
– models are stored locally in file

system as XML

– collaboration using standard
software configuration management
tools such as CVS, Subversion,
Perforce, ...

– versioning and branching handled by
software configuration management
tool

pure::variants Enterprise
– models are stored in a centralized

database

– collaboration in real-time, changes
will be automatically visible to any
connected user

– integrated reporting and history

– versioning and branching handled by
pure::variants server

– all functionalities of p::v Professional

pure::variants Enterprise
– models are stored in a centralized

database

– collaboration in real-time, changes
will be automatically visible to any
connected user

– integrated reporting and history

– versioning and branching handled by
pure::variants server

– all functionalities of p::v Professional

– full support for japanese user interface in pure::variants 3.0

www.pure-systems.comall you need for product lines Slide 36© pure-systems GmbH 2007

Product Integration

Development Tools

DOORS Simulink ClearCase Codegenerators

Generic Data

Variability Data Vari
an

t D
ata

........

www.pure-systems.comall you need for product lines Slide 37© pure-systems GmbH 2007

Extensions integrate pure::variants optimally into existing tool chains.

• Synchronizer for DOORS
• Synchronizer for CaliberRM
• Connector for MATLAB / Simulink
• Connector for Source Code Management
• Connector for Version Control Systems
• Connector for SAP
• Connector for ClearQuest
• Connector for ClearCase
• Connector for Bugzilla
• Connector for Reporting with BIRT

CVS

Extensions

www.pure-systems.comall you need for product lines Slide 38© pure-systems GmbH 2007

p::v Server

Integration Interfaces

p::v Runtime System C++ API
- DLL/COM/OLE

p::v Eclipse Client

p::v Java Core

p::v Eclipse Plugins

SOAP Interface

Java API
- Java Interfaces

Eclipse API
- Eclipse Extension Points

www.pure-systems.comall you need for product lines Slide 39© pure-systems GmbH 2007

Example Danfoss

Problem
– For 4 market segments control software is provided by different, worldwide

distributed teams (about 70 persons). Software is based on very similar
hardware.

– Reuse mostly „ad-hoc“.

– Cost and development effort were high.

Task
– Migration to controlled and systematic reuse based on common software

plattform.

www.pure-systems.comall you need for product lines Slide 40© pure-systems GmbH 2007

Example Danfoss

Our Role
– Participation during process definition

– Coaching and evaluation of newly setup platform team

– Supporting the migration to pure::variants

Results
– 1st stage of migration finished successfully after 6 month: all projects

develop based on common plattform

– 2nd stage of migration (introduction of pure::variants) almost completed

– Double number of products with about the same development capacity

www.pure-systems.comall you need for product lines Slide 41© pure-systems GmbH 2007

Example Automotive Supplier

Problem
– Configuration of control software with about 2000 features could not be

handled efficent manually.

Task
– Modelling of complete configuration knowledge in pure::variants and

generation of configuration files.

– Distributed real-time remote access to models and configurations.

www.pure-systems.comall you need for product lines Slide 42© pure-systems GmbH 2007

Example Automotive Supplier

Our Role
– Product supplier

– Adapation of pure::variants to customer demands: integration of customer
specific rule language.

Results
– Configurations are created in minutes instead of days.

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Transforming Legacy Systems
into Software Product Lines

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Transition and the SPLP-Framework

● Basically, the transition process is used to collect and create all
information described in the framework from pre-existing artefacts

● What is different to a start from the scratch?
– Much required information is already present, only hidden.

– Changes to processes and artefacts may be hard to achieve. It is more
complicated to introduce adequate processes and/or artefacts.

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Questions Before Starting a Transition

● What is missing for a SPL/SPLD in my organsation?
– Is it...

... systematic core asset development?

... problem and solution space specifications?

... applications build on top of p-space& s-space?

● Why make the transition?
– Is it...

... overall development cost reduction?

... shorter development time for similar products?

... increased product quality?

... ?

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Transition Steps

Pre-SPL

Product Relation Pattern Matching

Transition Scenario Identified

Variability Analysis

Model Building

SPL

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Product Relation Pattern: Product Forest

P
3

P
1

P'
0

P''
1

P
2

P
0

P'''
1

No shared software core assets
Similar user-visible functionality

Time

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Product Relation Pattern: Product Bush

P
3

P
1

P'
0

P''
1

P
2

P
0

P'''
1

Shared software core assets
Product variation through development path branching

Time

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Product Relation Pattern: Product Gang

PF
0

PV
0

PF
01

PV
1

PF'
01

PV'
0

PF'
012

PV'
2

PF''
012

PV''
2

PF'''
012

PV'''
0

PF'''
0123

PV'''
3

Shared software core assets
Product variation through solution configuration
No systematic variant management

Time

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Product Relation Pattern: Product Family

PF
0

PV
0

PF
01

PV
0

PV
1

PF'
01

PV'
0

PV'
1

PF'
012

PV'
0

PV'
1

PV'
2

PF''
012

PV''
0

PV''
1

PV''
2

PF'''
012

PV'''
0

PV'''
1

PV'''
2

PF'''
0123

PV'''
0

PV'''
1

PV'''
2

PV'''
3

Shared software core assets
Systematic variant management

Time

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Transition Scenarios

Current Software Assets

Separate Products
Merger

●Characteristics:
●

● similar problem domains
● mostly separate
 solution domains

Related Patterns:

● Product Forest
● (Product Bush)

Reuse
Improvement

●Characteristics:
●

● similar problem domains
● same or very similar
 solution domains

Related Patterns:

● Product Bush
● Product Gang

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Transition Steps

Pre-SPL

Product Relation Pattern Matching

Transition Scenario Identified

Variability Analysis

Model Building

SPL

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Variability Analysis

● What to do:
– Identification and extraction of (potential) variation points of the product line

– Extraction of variation point constraints

● Where to look:
– source code

● structure, algorithms, technologies

– documentation
● user manuals, internal documents, code comments

– management strategies
● version control, configuration

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Variability Analysis (2)

● Results:
– initial set of problem space variation points

– initial set of solution space variation points

– initial set of variation point constraints

● Purpose:
– providing input for

● product line scoping
● problem space definition
● core asset identification
● production plan creation

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Variation Point Description

● A variation point description consists of
– choices (features) available at that point

– variation constraints (requires/conflicts...)

– space it belongs to (problem/solution)

– relevance/importance w.r.t. product line variability

– binding time
● product configuration time, compile time, link time, installation time, user

configuration time, run time

– binding mode
● static vs. dynamic

– used variability pattern

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Analysis Direction

● Decide which direction to go:
– forward: start with problem space variability

● good if user manuals and/or product specification provide good insight into
variabilities between existing products; works for product forests

● permits to perform product line scoping w/o (closely) looking at the existing
software assets

– backward: start with solution space variability
● good if software design and architecture reflect problem space closely; especially

suited for product bushes and gangs
● requires problem space variability extraction before product line scoping can be

started

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Variation Point Extraction

1. Decide where to look for variability.

2. Build list of representative variation point patterns for your
software.

3. Search for variability patterns in your input material:

• manually

• supported by tools

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Problem Space VP Extraction

● Typical inputs:

– user documentation

● installation and user manuals

● white papers

– development documentation

● requirements specifications, use cases

● architecture design documents

● log files in version control system (esp. product bush)

● configuration files (esp. product gang)

● communication with customers (feature requests etc.)

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

The Commonality and Variability Extraction Approach

● developed by Fraunhofer IESE in CAFÉ project as part of their
Product Line Software Engineering Framework

● focusses on user documentation, but may be used also with
development documentation

● operates on textual structure and text comparison

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

CaVE - Approach

image © IESE 2004

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

CaVE - Pattern Template

Name The name of the pattern.
Short Description A one sentence description of the pattern.
Input The input model element.
Output The output model element.

Recall

Precision

Value

Transition
Long Description A longer description of the pattern, including keywords.

Related Pattern

Example

The average recall (the percentage of the total relevant ele-
ments retrieved by the pattern).
The average precision (the percentage of relevant elements in
relation to the number of total elements retrieved).
The value or relevance this pattern has for the stakeholder
“domain expert” (given as --,-, o, +, ++).
The input and output level for the pattern in the conceptual
model.

A list of other patterns this pattern is related to (e.g. composed
of these pattern).
An example for an input element where the pattern holds and
the elicited result.

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

CaVE - Pattern Example (1)

Name Headings
Short Description Headings usually represent features
Input Headings
Output Feature
Recall +
Precision ++
Value -
Transition Transition Documentation -> Product Line Artifact

Long Description
Related Pattern

Example

Since features describe functionalities that are of importance for
the user, they are found at prominent places in the user docu-
mentation.

In a mobile phone user documentation “Sending an SMS” is a
heading that describes a feature

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

CaVE - Pattern Example (2)

Name Parameter-Value

Short Description
Input Sentence; phrase
Output Alternative
Recall -
Precision ++
Value +
Transition user documentation -> requirements concept

Long Description
Related Pattern

Example

If Sentences or Phrases are identical in different documents but
include a different numerical value, this can be a parametrical
variability or alternative values

Parameters in the systems that have a different value could be
realized differently in the software

“The phone can send SMS with at most 124 characters” <->
“The phone can send SMS with at most 136 characters”

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

CaVE - Summary

● Pro:
– splits work between product line engineer, an (external) expert in product

line development, and the internal problem space experts, thus reduces
work load for domain experts

– well documented with industrial case studies in [CaVE]

● Con:
– no (documented) experiences with larger and/or very diverse documentation

– almost no tool support available

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Transition Steps

Pre-SPL

Product Relation Pattern Matching

Transition Scenario Identified

Variability Analysis

Problem Space Model Building

SPL

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Problem Space Modelling – Feature Modelling

● feature models are used most often because:

– the feature model concept is easy to understand

– even complex feature models are easy to navigate

– have enough expressive power for most real-world problems

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Transition Steps

Pre-SPL

Product Relation Pattern Matching

Transition Scenario Identified

Solution Space Variability Analysis

Model Building

SPL

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Solution Space VP Extraction

● Typical inputs:

– architecture design documents

– source code

– configuration scripts

– project build descriptions (e.g. makefiles)

– version control system structure and usage

– configuration files and file formats

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Solution Space VP – Pattern #1

Name #1 Preprocessor-based Text Fragment Selection

Short Description
Input source file
Output selection conditions and functional differences

Environment
Precision +
Value o
Transition source code -> variation point

Long Description
Related Pattern #2, #6

Example

If source code files contain preprocessor statements which
conditionially (de)activate program statements, this usually
identifies a variation point

C/C++ code, frame/macro processor input files, code generator
input

The textual exchange of program statements is an often used
concept to encapusulate platform specific code or to optionally
add functionality statically during compile time.

#ifdef FEA_TEMP_ALARM
 if (t > t_al) send_alarm(TEMP_ALARM,t);
#endif

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Solution Space VP – Pattern #2

Name # 2 Constant/variable based configuration

Short Description
Input source file
Output selection conditions and functional differences
Environment All programming languages
Precision +
Value +
Transition source code -> variation point

Long Description
Related Pattern #1

Example

If a source code files contains almost exclusively constant or va-
riable definitions, it may be used for configuration purposes.

Constants defined in a file/files referenced by many other files
usually provide access to shared information such as compile
and/or runtime configuration

C header files:
#define FEA_TEMP_ALARM 1
const int max_buffer_size = 512;
int max_buffer_count = 8;

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Solution Space VP – Pattern #3

Name # 3 Use of Build Configurations
Short Description IDE or build tool uses configuration files to produce variants
Input build configuration information
Output alternative oo hierarchy and/or functional differences
Environment IDE or build tool like make, ant
Precision ++
Value ++
Transition configuration file -> structural and/or functional variability

Long Description
Related Pattern #6

Example

IDE or project build tools such as make can be parametrized
and thus produce different output for the same input (file struc-
ture).

make could be used with different makefiles/make variable set-
tings as input to generate different builds of a project. The diffe-
rences in makefiles may be stored in different files or as diffe-
rent versions&branches of same file in version control systems.
Differences in parameters are often visible in build scripts.

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Solution Space VP – Pattern #4

Name # 4 Conditional code execution
Short Description Conditional code execution is controlled by configuration values
Input source code
Output conditions for alternative state flow/event processing/...
Environment All programming languages
Precision o
Value o
Transition source code -> functional variability

Long Description
Related Pattern #2

Example

Some conditional execution paths are controlled by configurati-
on data instead of user data. Indicators are that the condition
references configuration constants or uses methods to access
configuration values such as getters for global configuration ob-
jects

if (config.getValue("TEMP_ALARM" && t > t_al) {
 alarm.send("TEMP_ALARM",t);
 }

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Solution Space VP – Pattern #5

Short Description
Input version control system usage policy / version structure
Output list of customer specific product variants
Environment version control system
Precision o
Value +
Transition version branches -> product variants

Long Description
Related Pattern

Example

#5 Customer-specific product variants are managed using
branches in version control systems

Customer-specific product variants are often create by copying
parts or whole software systems into separate branches in ver-
sion control systems. Often naming of branches reveals such a
policy. Also combined with labeling of version representing pro-
duct variants.

List of branch names:
 BMW_V1
 PSA_V1
 VW_V2

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Solution Space VP – Pattern #6

Name # 6 File level variation

Short Description
Input file name list
Output variation point
Environment any language
Precision +
Value +
Transition files -> variant point alternatives

Long Description
Related Pattern #1, #3

Example

Different files with similar names are used as alternative imple-
mentations

For implementation of static code variability where the code
changes significantly between variants, often each variant is
placed in a separate file. The configuration mechanism selects
one of the files at compile time latest.

List of file names:
 temp_normal.c
 temp_alarm_sound.c
 temp_alarm_visual.c

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Solution Space VP – Pattern #7

Name # 7 Configurable Factory object

Short Description
Input factory pattern members
Output variation point and variation point constraints
Environment any language
Precision o
Value o
Transition architecture pattern -> variant point alternatives

Long Description
Related Pattern
Example

The software uses the factory pattern and the factory object is
configurable

The factory pattern is used to decouple the act of object creati-
on from the place where the object is created. If the type or im-
plementation of the factory object is changeable by configurati-
on, it may represent a variability

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Solution Space VP Detection

● In many cases looking at a small amount of code reveals used
patterns. (Programmers tend to repeat themselves)

● Since often embedded in syntactically restricted code structures,
solution space patterns can be more easily detected using (simple)
tools.

● The amount of detected variation point candidates is often huge.

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Solution Space VP Simple Analysis Tools Example

Pattern #1

Standard Unix tools used only (also for Win32)

Find and count all #if[n]?def/#elif (#define) statements:
find -name "*.[hc]*" -exec egrep "(#if[n]?def|
#elif)" {} \; | awk '{ print $2 }' |sort | uniq -c | sort -
r >ifdef.lst

Analyse name intersection:
awk '{ print $2 }' ifdef.lst defines.lst | sort | uniq -d

Get all files where #if[n]?def/#elif is used
ifnames `find -name “*.[hc]*”`

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Solution Space VP Simple Analysis Tool – Example Use

CVSNT (a cross platform re-
implementation of CVS)

– 327 KLOC

– 1079 different constant used in
#if* conditions

– 3775 different #define
constants

– Constants defined in

● makefiles
● (generated) header-files
● implementation files
● Visual Studio Project files

Top 20 #if* constants

Occur. Name
154 _WIN32
124 __cplusplus
109 SERVER_SUPPORT yes
74 SUPPORT_UTF8
61 XML_DTD yes
52 DEBUG yes
43 WIN32 yes
33 emacs
32 IPV6
26 SUPPORT_UCP yes
25 HAVE_CONFIG_H yes
25 CVS95 yes
24 _DEBUG yes
24 USE_SHARED_LIBS yes
23 XML_NS yes
21 UTIME_EXPECTS_WRITABLE yes
19 CVSGUI_PIPE yes
14 _UNICODE yes

Defined
internally

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Solution Space VP Analysis Tools

DMS (SemanticDesign): rule based language analyser and transformer,
many languages

PUMA*: C/C++ parser and manipulator (part of AspectC++)

AspectJ*: Java, pointcuts and “declare”

Eclipse JDT*/CDT*: internal analysers, good analysis quality esp. for
Java

* open source/freeware

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Transition Steps

Pre-SPL

Product Relation Pattern Matching

Transition Scenario Identified

Variability Analysis

Solution Space Model Building

SPL

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Solution Space – Architecture

● reference architecture
– recovery

● product gang, product bush

– building
● product forest

● core asset identification
– weight identified architectural components by

● expected use in future products
● measured use in existing products
● expected effort for adaptation

– not all existing assets have to be used!

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Production Plan: Problem – Solution Mapping

● problem space decisions do not always have one-to-one mapping
into solution space variation points

● a problem space to solution space mapping is required to
select/configure core assets from problem space configurations

● pure::variants' family models are used to model solution space and
the mapping, often in combination with other tools

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Production Plan Automation: Tool Support

● Script-based configuration tools

autoconf*: Unix-specific configuration tool, especially for multi-platform
development with C/C++ language

● MDSD tools

MetaEdit+: powerful domain specific modelling tool

openArchitectureWare*: powerful java-based model transformer and code
generator, generates with appropriate input model variant-specific code]

● Product Line tools

pure::variants: explicit solution space modelling with integrated/external model
transformation

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Management Aspects of
Software Product Lines

www.pure-systems.comall you need for product lines Slide 85© pure-systems GmbH 2007

Transition to Variant Management

● Transistion does not happen in a single moment, its a process

● Choosing the right approach depends on

– history and expected future

– available funding

– required time to market

– skill level in the organisation

www.pure-systems.comall you need for product lines Slide 86© pure-systems GmbH 2007

Project 4

Approaches: Platform-Centric

Project 2

Project1

Project 3

PL Team

PL Core Assets

Project 5

Project 6

Time

www.pure-systems.comall you need for product lines Slide 87© pure-systems GmbH 2007

Approaches: Incremental Platform-Centric

Project 2

Project1

Project 3

PL Core Assets

PL Team

Project 4

Project 5

Project 6

Time

www.pure-systems.comall you need for product lines Slide 88© pure-systems GmbH 2007

Approaches: Project-Centric

Project 2

Project1

Project 3

PL Management Team

PL Core Assets

Project 4

Project 5

Project 6

Time

www.pure-systems.comall you need for product lines Slide 89© pure-systems GmbH 2007

Approach Comparison

Incremental Platform

+ Pro:

– limited risk

– incremental
organisational
changes

- Con:

– slow reuse increase

Platform-Centric

+ Pro:

– lowest influence
from projects

– no legacy

- Con:

– organisational
impact

– slow start

– highest risk

Project-Centric

+ Pro:

– lowest risk

– only small
organisational
changes

– instant ROI

- Con:

– requires best reuse
discipline

– legacy system reuse

www.pure-systems.comall you need for product lines Slide 90© pure-systems GmbH 2007

Summary

● Avoid variability, compare cost of variation to benefit

● If it is economically feasible/necessary to introduce variability make
variation points and variants first level elements of your approach

● Explicit variant and variability management is the key to sucessful
reuse

● Don't try to do all at once, incremental adoption lowers both effort
and risk

● If you do it for the first time, ask someone who has done this before

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Summary

● Transforming existing legacy software into product lines is possible

– before starting a transition, careful risk assessment is necessary

● Results depend on:

– amount and quality of extractable knowledge,

– skills and management support of transition team.

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

References & Tool Links

[SPLP-FW] Software Engineering Institute, A Framework for Software Product Line Practice Version 4.2, 2005,
http://www.sei.cmu.edu/productlines/framework.html

[CaVE] John, I.; Doerr, J.; Schmid, K.: User documentation based product line modeling, IESE-Report, 004.04/E
http://www.iese.fraunhofer.de/pdf_files/iese-004_04.pdf

[FODA] Kang, K. et al: Feature-Oriented Domain Analysis (FODA) Feasibility Study, Technical Report CMU/SEI-90-TR-021, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, 1990

[Kolb] Kolb, R.; Muthig, D.; Yamauchi, K.: Migration existierender Softwarekomponenten in eine Produktfamilie (engl. Migration of existing software
components in product families), ObjektSpektrum 04/2005 (in german)
http://www.sigs.de/publications/os/2005/04/yamauchi_kolb_OS_04_05.pdf

AspectJ: www.eclipse.org/aspectj

autoconf: www.gnu.org/software/autoconf

DMS: www.semanticdesigns.com

Eclipse CDT: www.eclipse.org/cdt

openArchitectureWare: architecturware.sourceforge.net

PUMA: www.aspectc.org

pure::variants: www.pure-systems.com

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Linking Variants with Defects and Tests

www.pure-systems.comall you need for product lines Slide 94© pure-systems GmbH 2007

The Challenge

In variant rich systems not every test or defect is relevant for all variants.

The following questions have to be answered:

- Which tests, defects, change requests are relevant for which variants?

- What is the current development state regarding those items for the individual
variants?

The approach should be applicable to existing databases and tools.

www.pure-systems.comall you need for product lines Slide 95© pure-systems GmbH 2007

The pure::variants Approach

– pure::variants is used to manage the variability of the products. Each
relevant product is described by a variant model.

– Each pure::variants element (feature, component, part, source) can be
linked to external items using target list attributes.

– For each to be connected tool or database a pure::variants connector
plugin resolves theses links on demand in real-time.

– Depending on the tool the connector can also provide actions like
creation of a new defect or test case from within pure::variants.

www.pure-systems.comall you need for product lines Slide 96© pure-systems GmbH 2007

pure::variants – Sample Workspace

www.pure-systems.comall you need for product lines Slide 97© pure-systems GmbH 2007

Model with Test and Defect Information

Markers show current
defect/test state of
elements (here an
open bug and a failing
test case). Succeeded
tests and resolved
defects are not shown

Elements are linked to
test case or defects
using special list
attributes

Restrictions can be
used to make a
defect or test link
valid only under
defined conditions
(here the selection
of two features)

www.pure-systems.comall you need for product lines Slide 98© pure-systems GmbH 2007

Relations View – Quick Target Info Access

 Additional information
is accessible via the
tool tip and optionally
in specialized views.

Relations view lists related relation targets for the selected
element. For defects and tests the summary is shown

www.pure-systems.comall you need for product lines Slide 99© pure-systems GmbH 2007

Matrix View – Element Selection States

● The Matrix view enables
quick overview for multiple
variants. Here the selection
is shown (default
visualization).

● Each column represents a
variant, rows are selectable
elements like features

● Other visualizations can
show variant specific defect
and test states.

www.pure-systems.comall you need for product lines Slide 100© pure-systems GmbH 2007

Matrix View – Element Test States

● The test state visualization
shows for all selected
features the success of the
related tests (indicated by
different icons).

● It is visible here that not all
variants have the same set
of tests.

www.pure-systems.comall you need for product lines Slide 101© pure-systems GmbH 2007

Matrix View – Element Defect States

● The defect state
visualization shows for all
selected features the
existence of the related
open defects (indicated by
different icons).

● It is visible here that not all
variants have the same set
of defects.

www.pure-systems.comall you need for product lines Slide 102© pure-systems GmbH 2007

pure::variants – Extension Availability

● The Connector API has been published with release 2.4

– The API is available for public use by third parties

● pure-systems provides the following Connectors as commercial products
for release 2.4:

– pure::variants Connector for ClearQuest

– pure::variants Connector for Bugzilla

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Connecting pure::variants
with Model-based Tools

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Connection Approaches

● Read and Generate
– External model is fully read into pure::variants model

– pure::variants allows for modification and addition of rules etc.

– pure::variants generates variant-specific external model from p::v model

– Examples: Connector for Simulink

● Link and Communicate
– only variation point related information is extracted from external source

● possibly most information is entered in external tool

– pure::variants actuates variation points during configuration

– relevant configuration for tool is communicate to tool (online/offline)

– Examples: Connector for Doors, new Simulink Configurator

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Simulink Model with Variation Points

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Simulink Variation Point Setting

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

pure::variants based Simulink Configurator

www.pure-systems.comall you need for product lines© pure-systems GmbH 2007

Simulink Variation Point Setting

