
Copyright © 2011, T-VEC Technologies, Inc. All rights reserved.

Page 1 of 7

Model-Based Testing Traceability
Mark R. Blackburn, Robert D. Busser, Aaron M. Nauman, Travis R. Morgan

T-VEC Technologies, Herndon, VA

ABSTRACT

This paper discusses requirements for model-based testing tools

that are important for adoption by organizations that develop

and test large-scale critical applications. It discusses the

importance for the tools to provide full life cycle support

starting from requirement-to-test traceability from requirement

management tools, through requirement and design modeling,

to model-based test generation, automated test execution and

analysis, to test coverage analysis. The paper provides an

example of requirement-to-test traceability tool support and

discusses the benefits, which include faster test failure analysis,

better assessment of requirement-to-test completeness, and

critical support for project measurement and management. A

second example illustrates requirement-to-model defect

traceability.

Keywords

Model-based testing, automatic test generation, requirement

and design models, model checking, requirement-to-test

traceability.

1 INTRODUCTION
The users of new tools and technology in a research community

are far more tolerant of gaps, holes, and bugs than line

engineers and their management that must produce application

releases on tight schedules and constrained budgets. Over the

past several years, we have had the opportunity to work with

different organizations, in various application domains, and

been involved in the transition and adoption process of model-

based testing into their organization. There are many

requirements on the organization, users, and developers of the

tools that appear almost mandatory as part of an effective

adoption process.

The completeness of the model-based testing environment is a

critical element for many organizations. Although it is often

possible to test a subset of an application using model-based

testing tools, organizations often resist adoption if a relatively

complete approach is not available during pilot project trials.

The modeling techniques and languages must be relevant to the

applications under test (e.g., embedded systems with complex

math, avionics, command and control, language processing,

client-server), and support automated test execution against

various languages in different environments. The completeness

of the modeling language for specifying the behavior of the

target application as well as the ease of use of the model

representation technique is often critical too. The learning

curve must be relatively short, usually fewer than three months,

but with a rapid feasibility demonstration, usually within three

days.

Many organizations that have adopted model based testing

have mature processes and use some form of requirement

management process or tool to organize and manage

requirements that come from customers and other internal and

external stakeholders. Requirements often come in the form of

interface control documents, with separate functional

requirements that often are not contained in one single

document or specification. Integration of requirement

management with model-based testing tools provides a better

way to link the models to the requirements, and when

combined with automatic test generation provide better

requirement-to-test traceability, support for assessment of the

completeness of the requirements as well as the modeling

process, measurement for project management, and failure and

fault analysis.

1.1 Requirements
The following is a non-exhaustive list of requirements for a

model-based testing environment and process that is often

demanded of organizations that develop business-critical

software-intensive applications:

1. Automated and comprehensive test generation and with test

execution support for most any environment and language

2. Expressive modeling language that is easy-to-use, but scalable

to large and complex applications supporting multi-person

development teams

3. Integration into the full development life cycle, providing

support from requirement-to-test traceability through

configuration management

4. Supports project management and measurement critical to the

development of on-time product delivery

5. Provides return on investment (ROI) in short timeframe

1.2 Organization of Paper
This paper discusses requirements and related implications that

have evolved out of the use of model-based testing tools, and

describes fundamental aspects underlying end-to-end

requirement-to-test traceability, and key benefits that can be

derived from it that can be a driver for organizational adoption.

A brief example is provided to illustrate the full life cycle

support through an integrated set of tools. Lastly, model

checking and the associated benefits related to requirement-to-

model traceability are discussed at the end of the paper.

2 MODEL BASED TESTING CONTEXT
Automated test generation is the enabling technology for

model-based testing. One of the earliest approaches to test

automation transforms the model into Disjunctive Normal

Form (DNF) and a partition of the input domain is formed from

the preconditions of the disjuncts. A disjunct is a logically

AND’ed set of Boolean-value condition. Test cases are drawn

from each subdomain of the partition [1].

As shown in Figure 1, we have developed model-based testing

tools that transform models characterizing requirement, design

Copyright © 2011, T-VEC Technologies, Inc. All rights reserved.

Page 2 of 7

and application properties (e.g., safety), based on

representations such as decision tables, state machines, control

system, and code, into a hierarchical DNF-like form [2]. The

modeling languages support functions or other forms of model

references that are required to scale to large and complex

applications, with multi-person development teams. The

underlying modeling language provides support for an

extensive set of mathematical operators (e.g., trigonometric,

intrinsic, integrators, quantization, matrix) that extend standard

arithmetic operators to specify functional behavior supporting

various applications domains. Finally, the test vector generator

integrates with a test driver generator to produce test drivers

that automate test execution for most any language and test

environment with automated test results analysis.

Test

Generator

Model

Checker

Test

Driver

Generator

Application

Test

Results

Analysis

Expected Outputs and Properties

Actual

Outputs

Requirement

Management

Tools
Design

Model

Requirement

Model

Design

Model

Requirement

Model

Application

Properties

DNF 1

DNF 2
…

DNF k

DNF 1

DNF 2
…

DNF j

Grandparent
Subsystem

DNF 1

DNF 2
…

DNF i

Modeling Transforms

Child Subsystem

Parent Subsystem

Figure 1. Model Based Generation Flow

3 LIFE CYCLE SUPPORT
The integrated environment generically referred to as the Test

Automation Framework (TAF) integrates government and

commercially available model development and test generation

tools. One of the latest additions to TAF integrates the

DOORS® requirement management tool with the T-VEC

Tabular Modeler (TTM) that supports the Software Cost

Reduction (SCR) method [3] for requirement modeling.

DOORS integrates also with Simulink®, which supports

design-based models, and TAF integrates requirement models

with design models to provide full traceability from the

requirements source to the generated tests, as reflected in

Figure 2.

3.1 Example Requirements
The following vertical tracker example is simplified from a

requirement of the Traffic and Collision Avoidance System

(TCAS). A vertical tracker would track another aircraft relative

to one's current altitude and must maintain the tracking state.

Figure 3 shows an image of the vertical tracker requirements

that were entered into DOORS. Each statement of the

requirement is associated with a DOORS ID (ID). Some of the

requirements used in the traceability discussion are related to

the vertical tracking state as defined by the following IDs:

1. vt_3: another aircraft is considered to be in “in the altitude

window” if it is within 2700 feet above or below own aircraft

2. vt_6: the vertical tracking for own aircraft shall be in

TRACKING state if own aircraft is at or above 10,000 feet in

altitude, but no other aircraft is in the altitude window.

3. vt_7: the vertical tracking for the own aircraft shall be in

ADVISORY state if the own aircraft is at or above 10,000 feet

in altitude, and other aircraft in the altitude window.

4. vt_8: the vertical tracking for the own aircraft shall be in

NOT_TRACKING state if the own aircraft is less than 10,000

feet in altitude.

SimulinkSimulink

T-VEC SystemTTM/SCR

• Design Capture

• Simulation

• Code Generation

•Static Model Analysis

•Test Generation

•Coverage Analysis

•Test Driver Generation

•Test Results Analysis

• Requirements Capture

• Bridge From Informal Requirements to
Formal Design

Simulink

Tester

Simulink

Tester

Requirements/Design Capture

Captured Model Translation

DOORS

Figure 2. TAF Integrated Environment

3.2 Requirement-to-Test Traceability
This section provides an example to explain the process for

linking DOORS requirements to the TTM requirements model.

The tool support for requirement-to-test traceability involves

linking various sources of requirements through the model. The

model transformation, test vector generation, and test driver

generation provide the tool support to link the requirements to

the test vectors, test drivers, and test reports. The process, as

shown in Figure 3 has three basic steps:

1. A DOORS module is imported into the TTM. There are

options to add or delete a DOORS module to TTM or

synchronize DOORS modules when they are updated. There is

a one-to-one correspondence between a DOORS ID and a

http://www.t-vec.com/

Copyright © 2011, T-VEC Technologies, Inc. All rights reserved.

Page 3 of 7

TTM requirement ID.

2. Imported requirements maintain the outline structure that they

have within the DOORS environment. One or more DOORS

requirements can be linked to an element of a TTM model

(e.g., condition/assignment) as shown in Figure 3, or linked to

a higher-level in the TTM model, such as a condition, event or

mode table as shown in Figure 4.

3. The model translation maintains the link between the

requirement ID, and during test generation the requirement

link is an attribute of the test vector. During test driver

generation, requirement IDs can be output to the test driver to

provide detailed traceability to the executable test cases.

TTM provides requirement management functionality that is

similar to a DOORS module. Imported DOORS modules are

linked into TTM as read-only modules. Changes to the

requirements must be made within DOORS and then

synchronized within TTM. Additional requirements can be

created directly in TTM if they are not contained within

DOORS or if the source requirements are not in a requirement

management system such as DOORS. The process to link a

requirement to the model is the same.

DOORS Test Vectors

TTM

1

2

3

Figure 3. Requirement Links From Model to Test Vectors

Figure 4. Linking Requirement to Table

3.3 Design Model Traceability
This section describes a process for linking requirements into a

Simulink design model and tracing the requirement to test

vectors. Figure 5 shows a Simulink model for the vertical

tracker requirements. Linking within Simulink is on a block-

by-block basis (e.g., relational operator, absolute value,

switch), and are sometimes difficult to pinpoint, because

requirements are associated with a thread through the model.

For example the switch block labeled “Advisory or Track” is

related to two requirements associated with the requirements

defined by DOORS ID vt_6 and vt_7. A switch block pass

through input 1 when input 2 is true otherwise it passes through

input 3. The Tag field of the associated Block Property for the

switch block contains a reference to both DOORS

requirements, because the outputs of the switch block can be

either Advisory or Track.

During the translation process, which is carried out by the

Simulink Tester shown in Figure 2, the associated Tag fields

are included as attributes in the transformed model from which

test vectors are generated. During the test vector generation

process, the requirement IDs are associated with the generated

test vectors. The resulting test vectors, shown in Figure 5,

include a list of the requirement IDs associated with each

Simulink block in the path for the test vector.

Copyright © 2011, T-VEC Technologies, Inc. All rights reserved.

Page 4 of 7

Test Vectors
Simulink Block Property

Simulink Model

Figure 5. Requirement Links in Simulink Model

Test drivers are generated for both the MATLAB simulator,

which executes the tests against the Simulink model, and code

that is generated through the MATLAB Real-time workshop.

Once the test drivers are executed a test report file is produced

as shown in Figure 6. If a failure occurs there is a one-to-one

correspondence between the test number in the test comparison

report and the test vector report, allowing the failed test to be

traced back to the model and to the associated requirement.

Figure 6. Test Results Report

4 MODEL TRACEABILITY
Requirements often come from different sources and

requirement change notices are a very common way to

document new features or capabilities that are added to a

system through incremental releases. During the modeling

process, the requirement features may be allocated to different

subsystems with dependency relationships, and some features

allocated to different subsystems may be inconsistent resulting

in a model defects. Model traceability helps to identify defects

within a model. This is even more important for larger models

that are composed of sets of related models.

T-VEC performs a form of model checking on each DNF

during test vector generation, and creates reports identifying the

defects. A simple example of a model defect is a logical

contradiction, where a constraint such as (x > 0) & (x <

0) is in the DNF specification. Model checking hierarchically

composed subsystems involves checking the satisfiability of

constraint or function references between higher-level (i.e.,

grandparent) and lower-level (i.e., child) subsystems. For

example, as conceptually shown in Figure 1, if there is a

constraint, x > 0 in a DNF thread from the grandparent

subsystem to a child subsystem, there must be at least one DNF

through the parent and child that permits x > 0. If such a

constraint in the grandparent cannot be satisfied, then the input

space for that DNF of the grandparent is empty (i.e., null), and

no test inputs can be selected; this is a model defect. During

test generation, model traceability is used to link a model-

defect report back to the model location that is a likely source

of the defect.

4.1 Model Traceability Linkage Examples
The example in Figure 7 represents a trivial model with four

SCR condition tables modeled in TTM. This simplified model

Copyright © 2011, T-VEC Technologies, Inc. All rights reserved.

Page 5 of 7

has a seeded defect to illustrate the model traceability links

from a model report to the model. The tables have dependency

relationships to illustrate the use of model traceability. Each

row of each table in the transformed model has a one-to-one

correspondence with a DNF thread. The highest-level

subsystem, hierarchical_root has one DNF that

references child_yz, and parent_xy, each with two DNF

threads. Parent_xy references child_xy, which also has

two DNF threads.

hierarchical_roothierarchical_root

parent_xy

child_xy

child_yz

Figure 7. Hierarchical TTM Model

The traceability links from the status and error reports to the

likely source of the model error is shown in Figure 8. The

status report provides a summary for each subsystem, including

the number of DNFs (referred to as Domain Convergence Paths

or DCPs [1]) derived during the compilation process of the

model. The summary report provides the number of test

vectors, and the number of model coverage errors. Hyperlinks

from the project status report link to other reports including the

model defect error report that is produced for each DCP that

has a defect. A hyperlink from the model error reports traces

back to the model specification that is the likely source of the

problem.

The defect exists because there is no combination of DNF

threads through the lower-level subsystems that permit both x

and z to be greater than zero when the output (i.e., assignment)

of hierarchical_root must be TRUE. The model

child_2_xy requires y <= 0 when x > 0, but child_2_yz

requires y > 0 when z > 0. Thus, a contradiction exists between

the logic of hierarchical_root and logic across two

dependent subsystems.

Figure 9 is a Simulink model that represents the same

specification as defined in Figure 7. Like the TTM model, the

Simulink is translated and an attempt is made to generate test

vectors, however, due to the defect it is not possible to produce

a test vector when the output value of hierarchical_root

is TRUE. The tools produce a similar set of hyperlinked

reports as shown in Figure 10, that link back to the source of

the Simulink® model problem.

Status Report

Model Defect Error Report

Hyperlink to

Model

Figure 8. Model Defect Traceability to TTM

Figure 9. Model Defect Traceability to Simulink

4.2 Other Model Checking
The model checking capability supports also proof of

properties (e.g., safety). Model assertions representing safety

properties are specified external to the model, and during the

test generation process, if test vectors are generated from a

safety property assertion that is associated with a model, the

test vector identifies a DNF thread through the model, where

the safety property is violated. If a test vector is not produced,

the safety property is not violated.

For example, one of the largest and most complex Simulink

models where T-VEC is being applied is the avionics system

control law model for the Lockheed Martin Joint Strike Fighter.

A common safety-related situation to avoid for an avionics

system is to ensure that the radar is not enabled when the

aircraft is on the ground, usually referred to as weight on

wheels (WOW), because this could cause harm to people near

the aircraft. An example of safety property to model check

would be WOW & Radar = ENABLED. This assertion would

Copyright © 2011, T-VEC Technologies, Inc. All rights reserved.

Page 6 of 7

be combined with the entire Simulink model, and if a test

vector is produced, it identifies the thread through the model

where the safety property is violated.

Other checks such as mathematical errors or potential errors

(e.g. division by a domain that spans zero) are flagged as being

a potential divide-by-zero hazard, or range overflow or

underflow, where variables of the model have values outside

the specified bounds of the type of that variable. The error

reports generated for these errors link back to the model source.

Status Report

Model Defect Error Report

Hyperlink to

Model

Figure 10. Simulink Model Traceability

5 SUMMARY
Model-based testing has many benefits including better quality

requirements, better tests, and faster test design, but in working

with companies since 1996, organizations are often resistant to

adopt technology until it is demonstrated to satisfy a large set

of requirements. Such requirements include end-to-end life

cycle support, extensive expressiveness in the modeling

techniques and languages supporting test execution for many

languages and environments, with return on investment in a

short timeframe.

During the past several years, most organization we have

worked with have been requesting integration of requirement

management tools with our requirement and design-based

modeling and test generation tools. This paper describes several

of the recent developments that include the integration of the

DOORS requirement management tool with both the TTM

requirement modeler, as well as the integration through the

Simulink-based design modeling environment to provide full

model-based test generation and test driver generation support.

The integration with DOORS provides full requirement-to-test

traceability, and some of the key benefits derived through the

traceability process help to foster organizational adoption. A

few examples include:

1. The requirement modeling process includes support for linking

requirements to detailed modeling statements and makes the

completeness of the model with respect to the requirements

document more visible. Requirements without a link in the

model are exposed; missing links can imply that a requirement

is not modeled, or that the requirement is not modelable or

testable, and requires further refinement.

2. Requirements that are too vague are exposed early during the

modeling process when they can be more cost-effectively

partitioned or refined. For, example, a requirement is too large

when a requirement must be linked to an entire table (e.g.,

SCR condition table) in a model or multiple tables rather than

to a table element.

3. Models without a link to a requirement are made visible; such

requirements may be implementation-derived, or inherent,

possibly requiring further documentation that should be

included in the requirement source.

4. Requirements linked forward to each executable test case

permits test failures to be linked back from the

implementation, to the model and to the requirement source.

This can significantly reduce the failure analysis time and cost.

5. Project managers can better understand how measures derived

from model-based analysis and testing can be used to help in

project, product, and process measurement, where such

measures support decision making within their organizations.

A recent paper [4] describes the fundamental units of measure

derived from the model-based artifacts. Requirement-to-test

traceability provides key information to automate the

management and generation of project measurement

information. We have created another tool to support the use

historical measures for predicting project duration and usage of

real-time project data to predict the completion of an ongoing

project.

Another recent addition to the tools provides model traceability

links from the model defect error reports to the model locations

that are the most likely source of the model defects. Model

traceability through hyperlinked error reports allows model or

requirement defects to be quickly identified, reducing the cost

of rework.

Users have been the key drivers for the model-based test

traceability discussed in this paper. Many of the same users

have reported on the benefits of TAF’s model-based testing

support in terms of cost savings through test automation [5, 6],

early identification of requirement defects to reduce rework

cost [7], systematic support to identify critical system defects

[8], advanced capabilities [9], and applicability to other

domains such as security [10, 11]. However, continually

extending model-based testing to support the full life cycle

seems to be significantly important for additional

organizational adoption.

6 ACKNOWLEGEMENT
We would like to acknowledge Chris Snyder who did an

excellent job on the integration of DOORS to TTM.

Copyright © 2011, T-VEC Technologies, Inc. All rights reserved.

Page 7 of 7

7 REFERENCES
[1] Rob.Hierons.

http://www.brunel.ac.uk/~csstrmh/research/test_z.html.

[2] Blackburn, M.R., R.D. Busser, Automatic Generation of

Test Vectors for SCR-Style Specifications. Proceeding of the

12th Annual Conference on Computer Assurance, June, 1997.

http://www.t-vec.com/download/papers/tvec_scr2tvec.pdf

[3] Heitmeyer, C., R. Jeffords, B. Labaw, Automated

Consistency Checking of Requirements Specifications. ACM

TOSEM, 5(3):231-261, 1996. See

http://chacs.nrl.navy.mil/personnel/heitmeyer.html.

[4] Blackburn, M.R., Objective Measures from Model-Based

Testing, STAREAST, Orlando, May 2004.

[5] Statezni, David, Industrial Application of Model-Based

Testing, 16th International Conference and Exposition on

Testing Computer Software, June 1999.

[6] Statezni, David. Test Automation Framework, State-based

and Signal Flow Examples, Twelfth Annual Software

Technology Conference, May 2000.

[7] Safford, Ed, L. Test Automation Framework, State-based

and Signal Flow Examples, Twelfth Annual Software

Technology Conference, May 2000.

[8] Blackburn, M. R., R.D. Busser, R. Knickerbocker, R.

Kasuda, Mars Polar Lander Fault Identification Using Model-

based Testing, NASA Software Engineering Workshop,

November 2001. See

http://www.software.org/pub/taf/downloads/mars_polar_lander

_2001.pdf.

[9] Busser, R.D., L. Boden, Adding Natural Relationships to

Simulink Models to Improve Automated Model-based Testing,

Digital Avionics Systems Conference, October 2004. See

http://www.software.org/pub/externalpapers/papers/busser-

2004-2.doc.

[10] Chandramouli, R., M. R. Blackburn, Model-based

Automated Security Functional Testing , 7th Annual Workshop

on Distributed Objects and Components Security (DOCSEC),

Baltimore, MD, April 2003.

[11] Blackburn, M. R., R. Chandramouli, Using Model-Based

Testing to Assess Smart Card Interoperability Conformance,

International Conference on Computing, Communications and

Control Technologies, Austin, August 2004.

http://www.t-vec.com/download/papers/tvec_scr2tvec.pdf
http://chacs.nrl.navy.mil/personnel/heitmeyer.html
http://www.software.org/pub/taf/downloads/mars_polar_lander_2001.pdf
http://www.software.org/pub/taf/downloads/mars_polar_lander_2001.pdf
http://www.software.org/pub/externalpapers/papers/busser-2004-2.doc
http://www.software.org/pub/externalpapers/papers/busser-2004-2.doc
http://www.software.org/pub/externalpapers/papers/busser-2004-2.doc

