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ABSTRACT 

This paper discusses requirements for model-based testing tools 

that are important for adoption by organizations that develop 

and test large-scale critical applications. It discusses the 

importance for the tools to provide full life cycle support 

starting from requirement-to-test traceability from requirement 

management tools, through requirement and design modeling, 

to model-based test generation, automated test execution and 

analysis, to test coverage analysis. The paper provides an 

example of requirement-to-test traceability tool support and 

discusses the benefits, which include faster test failure analysis, 

better assessment of requirement-to-test completeness, and 

critical support for project measurement and management. A 

second example illustrates requirement-to-model defect 

traceability. 
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1 INTRODUCTION 
The users of new tools and technology in a research community 

are far more tolerant of gaps, holes, and bugs than line 

engineers and their management that must produce application 

releases on tight schedules and constrained budgets. Over the 

past several years, we have had the opportunity to work with 

different organizations, in various application domains, and 

been involved in the transition and adoption process of model-

based testing into their organization. There are many 

requirements on the organization, users, and developers of the 

tools that appear almost mandatory as part of an effective 

adoption process.  

The completeness of the model-based testing environment is a 

critical element for many organizations. Although it is often 

possible to test a subset of an application using model-based 

testing tools, organizations often resist adoption if a relatively 

complete approach is not available during pilot project trials. 

The modeling techniques and languages must be relevant to the 

applications under test (e.g., embedded systems with complex 

math, avionics, command and control, language processing, 

client-server), and support automated test execution against 

various languages in different environments. The completeness 

of the modeling language for specifying the behavior of the 

target application as well as the ease of use of the model 

representation technique is often critical too. The learning 

curve must be relatively short, usually fewer than three months, 

but with a rapid feasibility demonstration, usually within three 

days. 

Many organizations that have adopted model based testing 

have mature processes and use some form of requirement 

management process or tool to organize and manage 

requirements that come from customers and other internal and 

external stakeholders. Requirements often come in the form of 

interface control documents, with separate functional 

requirements that often are not contained in one single 

document or specification. Integration of requirement 

management with model-based testing tools provides a better 

way to link the models to the requirements, and when 

combined with automatic test generation provide better 

requirement-to-test traceability, support for assessment of the 

completeness of the requirements as well as the modeling 

process, measurement for project management, and failure and 

fault analysis. 

1.1 Requirements 
The following is a non-exhaustive list of requirements for a 

model-based testing environment and process that is often 

demanded of organizations that develop business-critical 

software-intensive applications: 

1. Automated and comprehensive test generation and with test 

execution support for most any environment and language 

2. Expressive modeling language that is easy-to-use, but scalable 

to large and complex applications supporting multi-person 

development teams 

3. Integration into the full development life cycle, providing 

support from requirement-to-test traceability through 

configuration management 

4. Supports project management and measurement critical to the 

development of on-time product delivery 

5. Provides return on investment (ROI) in short timeframe 

1.2 Organization of Paper 
This paper discusses requirements and related implications that 

have evolved out of the use of model-based testing tools, and 

describes fundamental aspects underlying end-to-end 

requirement-to-test traceability, and key benefits that can be 

derived from it that can be a driver for organizational adoption. 

A brief example is provided to illustrate the full life cycle 

support through an integrated set of tools. Lastly, model 

checking and the associated benefits related to requirement-to-

model traceability are discussed at the end of the paper. 

2 MODEL BASED TESTING CONTEXT 
Automated test generation is the enabling technology for 

model-based testing. One of the earliest approaches to test 

automation transforms the model into Disjunctive Normal 

Form (DNF) and a partition of the input domain is formed from 

the preconditions of the disjuncts. A disjunct is a logically 

AND’ed set of Boolean-value condition. Test cases are drawn 

from each subdomain of the partition [1].  

As shown in Figure 1, we have developed model-based testing 

tools that transform models characterizing requirement, design 



Copyright © 2011, T-VEC Technologies, Inc. All rights reserved. 

Page 2 of 7 

and application properties (e.g., safety), based on 

representations such as decision tables, state machines, control 

system, and code, into a hierarchical DNF-like form [2]. The 

modeling languages support functions or other forms of model 

references that are required to scale to large and complex 

applications, with multi-person development teams. The 

underlying modeling language provides support for an 

extensive set of mathematical operators (e.g., trigonometric, 

intrinsic, integrators, quantization, matrix) that extend standard 

arithmetic operators to specify functional behavior supporting 

various applications domains. Finally, the test vector generator 

integrates with a test driver generator to produce test drivers 

that automate test execution for most any language and test 

environment with automated test results analysis.  

Test

Generator

Model

Checker

Test

Driver

Generator

Application

Test

Results

Analysis

Expected Outputs and Properties

Actual

Outputs

Requirement

Management

Tools
Design

Model

Requirement

Model

Design

Model

Requirement

Model

Application

Properties

DNF 1

DNF 2
…

DNF k

DNF 1

DNF 2
…

DNF j

Grandparent 
Subsystem

DNF 1

DNF 2
…

DNF i

Modeling Transforms

Child Subsystem

Parent Subsystem

 
Figure 1. Model Based Generation Flow 

3 LIFE CYCLE SUPPORT 
The integrated environment generically referred to as the Test 

Automation Framework (TAF) integrates government and 

commercially available model development and test generation 

tools. One of the latest additions to TAF integrates the 

DOORS® requirement management tool with the T-VEC 

Tabular Modeler (TTM) that supports the Software Cost 

Reduction (SCR) method [3] for requirement modeling. 

DOORS integrates also with Simulink®, which supports 

design-based models, and TAF integrates requirement models 

with design models to provide full traceability from the 

requirements source to the generated tests, as reflected in 

Figure 2.  

3.1 Example Requirements 
The following vertical tracker example is simplified from a 

requirement of the Traffic and Collision Avoidance System 

(TCAS). A vertical tracker would track another aircraft relative 

to one's current altitude and must maintain the tracking state. 

Figure 3 shows an image of the vertical tracker requirements 

that were entered into DOORS. Each statement of the 

requirement is associated with a DOORS ID (ID). Some of the 

requirements used in the traceability discussion are related to 

the vertical tracking state as defined by the following IDs:  

1. vt_3: another aircraft is considered to be in “in the altitude 

window” if it is within 2700 feet above or below own aircraft 

2. vt_6: the vertical tracking for own aircraft shall be in 

TRACKING state if own aircraft is at or above 10,000 feet in 

altitude, but no other aircraft is in the altitude window.  

3. vt_7: the vertical tracking for the own aircraft shall be in 

ADVISORY state if the own aircraft is at or above 10,000 feet 

in altitude, and other aircraft in the altitude window.  

4. vt_8: the vertical tracking for the own aircraft shall be in 

NOT_TRACKING state if the own aircraft is less than 10,000 

feet in altitude. 
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Figure 2. TAF Integrated Environment 

3.2 Requirement-to-Test Traceability 
This section provides an example to explain the process for 

linking DOORS requirements to the TTM requirements model. 

The tool support for requirement-to-test traceability involves 

linking various sources of requirements through the model. The 

model transformation, test vector generation, and test driver 

generation provide the tool support to link the requirements to 

the test vectors, test drivers, and test reports. The process, as 

shown in Figure 3 has three basic steps:  

1. A DOORS module is imported into the TTM. There are 

options to add or delete a DOORS module to TTM or 

synchronize DOORS modules when they are updated. There is 

a one-to-one correspondence between a DOORS ID and a 

http://www.t-vec.com/
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TTM requirement ID. 

2. Imported requirements maintain the outline structure that they 

have within the DOORS environment. One or more DOORS 

requirements can be linked to an element of a TTM model 

(e.g., condition/assignment) as shown in Figure 3, or linked to 

a higher-level in the TTM model, such as a condition, event or 

mode table as shown in Figure 4. 

3. The model translation maintains the link between the 

requirement ID, and during test generation the requirement 

link is an attribute of the test vector. During test driver 

generation, requirement IDs can be output to the test driver to 

provide detailed traceability to the executable test cases. 

TTM provides requirement management functionality that is 

similar to a DOORS module. Imported DOORS modules are 

linked into TTM as read-only modules. Changes to the 

requirements must be made within DOORS and then 

synchronized within TTM. Additional requirements can be 

created directly in TTM if they are not contained within 

DOORS or if the source requirements are not in a requirement 

management system such as DOORS. The process to link a 

requirement to the model is the same.  

DOORS Test Vectors 

TTM

1

2

3

 
Figure 3. Requirement Links From Model to Test Vectors

 
Figure 4. Linking Requirement to Table 

3.3 Design Model Traceability 
This section describes a process for linking requirements into a 

Simulink design model and tracing the requirement to test 

vectors. Figure 5 shows a Simulink model for the vertical 

tracker requirements. Linking within Simulink is on a block-

by-block basis (e.g., relational operator, absolute value, 

switch), and are sometimes difficult to pinpoint, because 

requirements are associated with a thread through the model. 

For example the switch block labeled “Advisory or Track” is 

related to two requirements associated with the requirements 

defined by DOORS ID vt_6 and vt_7. A switch block pass 

through input 1 when input 2 is true otherwise it passes through 

input 3. The Tag field of the associated Block Property for the 

switch block contains a reference to both DOORS 

requirements, because the outputs of the switch block can be 

either Advisory or Track.  

During the translation process, which is carried out by the 

Simulink Tester shown in Figure 2, the associated Tag fields 

are included as attributes in the transformed model from which 

test vectors are generated. During the test vector generation 

process, the requirement IDs are associated with the generated 

test vectors. The resulting test vectors, shown in Figure 5, 

include a list of the requirement IDs associated with each 

Simulink block in the path for the test vector. 
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Figure 5. Requirement Links in Simulink Model 

 

Test drivers are generated for both the MATLAB simulator, 

which executes the tests against the Simulink model, and code 

that is generated through the MATLAB Real-time workshop. 

Once the test drivers are executed a test report file is produced 

as shown in Figure 6. If a failure occurs there is a one-to-one 

correspondence between the test number in the test comparison 

report and the test vector report, allowing the failed test to be 

traced back to the model and to the associated requirement. 

 
Figure 6. Test Results Report 

4 MODEL TRACEABILITY  
Requirements often come from different sources and 

requirement change notices are a very common way to 

document new features or capabilities that are added to a 

system through incremental releases. During the modeling 

process, the requirement features may be allocated to different 

subsystems with dependency relationships, and some features 

allocated to different subsystems may be inconsistent resulting 

in a model defects. Model traceability helps to identify defects 

within a model. This is even more important for larger models 

that are composed of sets of related models.  

T-VEC performs a form of model checking on each DNF 

during test vector generation, and creates reports identifying the 

defects. A simple example of a model defect is a logical 

contradiction, where a constraint such as (x > 0) & (x < 

0) is in the DNF specification. Model checking hierarchically 

composed subsystems involves checking the satisfiability of 

constraint or function references between higher-level (i.e., 

grandparent) and lower-level (i.e., child) subsystems. For 

example, as conceptually shown in Figure 1, if there is a 

constraint, x > 0 in a DNF thread from the grandparent 

subsystem to a child subsystem, there must be at least one DNF 

through the parent and child that permits x > 0. If such a 

constraint in the grandparent cannot be satisfied, then the input 

space for that DNF of the grandparent is empty (i.e., null), and 

no test inputs can be selected; this is a model defect. During 

test generation, model traceability is used to link a model-

defect report back to the model location that is a likely source 

of the defect. 

4.1 Model Traceability Linkage Examples 
The example in Figure 7 represents a trivial model with four 

SCR condition tables modeled in TTM. This simplified model 
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has a seeded defect to illustrate the model traceability links 

from a model report to the model. The tables have dependency 

relationships to illustrate the use of model traceability. Each 

row of each table in the transformed model has a one-to-one 

correspondence with a DNF thread. The highest-level 

subsystem, hierarchical_root has one DNF that 

references child_yz, and parent_xy, each with two DNF 

threads. Parent_xy references child_xy, which also has 

two DNF threads.  

hierarchical_roothierarchical_root

parent_xy

child_xy

child_yz

 
Figure 7. Hierarchical TTM Model 

The traceability links from the status and error reports to the 

likely source of the model error is shown in Figure 8. The 

status report provides a summary for each subsystem, including 

the number of DNFs (referred to as Domain Convergence Paths 

or DCPs [1]) derived during the compilation process of the 

model. The summary report provides the number of test 

vectors, and the number of model coverage errors. Hyperlinks 

from the project status report link to other reports including the 

model defect error report that is produced for each DCP that 

has a defect. A hyperlink from the model error reports traces 

back to the model specification that is the likely source of the 

problem.  

The defect exists because there is no combination of DNF 

threads through the lower-level subsystems that permit both x 

and z to be greater than zero when the output (i.e., assignment) 

of hierarchical_root must be TRUE. The model 

child_2_xy requires y <= 0 when x > 0, but child_2_yz 

requires y > 0 when z > 0. Thus, a contradiction exists between 

the logic of hierarchical_root and logic across two 

dependent subsystems.  

Figure 9 is a Simulink model that represents the same 

specification as defined in Figure 7. Like the TTM model, the 

Simulink is translated and an attempt is made to generate test 

vectors, however, due to the defect it is not possible to produce 

a test vector when the output value of hierarchical_root 

is TRUE. The tools produce a similar set of hyperlinked 

reports as shown in Figure 10, that link back to the source of 

the Simulink® model problem. 

Status Report

Model Defect Error Report 

Hyperlink to 

Model

 
Figure 8. Model Defect Traceability to TTM 

 
Figure 9. Model Defect Traceability to Simulink 

4.2 Other Model Checking  
The model checking capability supports also proof of 

properties (e.g., safety). Model assertions representing safety 

properties are specified external to the model, and during the 

test generation process, if test vectors are generated from a 

safety property assertion that is associated with a model, the 

test vector identifies a DNF thread through the model, where 

the safety property is violated. If a test vector is not produced, 

the safety property is not violated. 

For example, one of the largest and most complex Simulink 

models where T-VEC is being applied is the avionics system 

control law model for the Lockheed Martin Joint Strike Fighter. 

A common safety-related situation to avoid for an avionics 

system is to ensure that the radar is not enabled when the 

aircraft is on the ground, usually referred to as weight on 

wheels (WOW), because this could cause harm to people near 

the aircraft. An example of safety property to model check 

would be WOW & Radar = ENABLED. This assertion would 
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be combined with the entire Simulink model, and if a test 

vector is produced, it identifies the thread through the model 

where the safety property is violated. 

Other checks such as mathematical errors or potential errors 

(e.g. division by a domain that spans zero) are flagged as being 

a potential divide-by-zero hazard, or range overflow or 

underflow, where variables of the model have values outside 

the specified bounds of the type of that variable. The error 

reports generated for these errors link back to the model source. 

Status Report

Model Defect Error Report 

Hyperlink to 

Model

 
Figure 10. Simulink Model Traceability 

5 SUMMARY 
Model-based testing has many benefits including better quality 

requirements, better tests, and faster test design, but in working 

with companies since 1996, organizations are often resistant to 

adopt technology until it is demonstrated to satisfy a large set 

of requirements. Such requirements include end-to-end life 

cycle support, extensive expressiveness in the modeling 

techniques and languages supporting test execution for many 

languages and environments, with return on investment in a 

short timeframe. 

During the past several years, most organization we have 

worked with have been requesting integration of requirement 

management tools with our requirement and design-based 

modeling and test generation tools. This paper describes several 

of the recent developments that include the integration of the 

DOORS requirement management tool with both the TTM 

requirement modeler, as well as the integration through the 

Simulink-based design modeling environment to provide full 

model-based test generation and test driver generation support. 

The integration with DOORS provides full requirement-to-test 

traceability, and some of the key benefits derived through the 

traceability process help to foster organizational adoption. A 

few examples include: 

1. The requirement modeling process includes support for linking 

requirements to detailed modeling statements and makes the 

completeness of the model with respect to the requirements 

document more visible. Requirements without a link in the 

model are exposed; missing links can imply that a requirement 

is not modeled, or that the requirement is not modelable or 

testable, and requires further refinement.  

2. Requirements that are too vague are exposed early during the 

modeling process when they can be more cost-effectively 

partitioned or refined. For, example, a requirement is too large 

when a requirement must be linked to an entire table (e.g., 

SCR condition table) in a model or multiple tables rather than 

to a table element.  

3. Models without a link to a requirement are made visible; such 

requirements may be implementation-derived, or inherent, 

possibly requiring further documentation that should be 

included in the requirement source. 

4. Requirements linked forward to each executable test case 

permits test failures to be linked back from the 

implementation, to the model and to the requirement source. 

This can significantly reduce the failure analysis time and cost.  

5. Project managers can better understand how measures derived 

from model-based analysis and testing can be used to help in 

project, product, and process measurement, where such 

measures support decision making within their organizations. 

A recent paper [4] describes the fundamental units of measure 

derived from the model-based artifacts. Requirement-to-test 

traceability provides key information to automate the 

management and generation of project measurement 

information. We have created another tool to support the use 

historical measures for predicting project duration and usage of 

real-time project data to predict the completion of an ongoing 

project.  

Another recent addition to the tools provides model traceability 

links from the model defect error reports to the model locations 

that are the most likely source of the model defects. Model 

traceability through hyperlinked error reports allows model or 

requirement defects to be quickly identified, reducing the cost 

of rework. 

Users have been the key drivers for the model-based test 

traceability discussed in this paper. Many of the same users 

have reported on the benefits of TAF’s model-based testing 

support in terms of cost savings through test automation [5, 6], 

early identification of requirement defects to reduce rework 

cost [7], systematic support to identify critical system defects 

[8], advanced capabilities [9], and applicability to other 

domains such as security [10, 11]. However, continually 

extending model-based testing to support the full life cycle 

seems to be significantly important for additional 

organizational adoption. 
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