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Abstract 
The paper proposes a new scheme for safety integrity levels 
(SILs) based on reasoned principles. The scheme provides a 
mechanism for selecting appropriate verification and 
validation techniques for a given SIL and, in particular, 
suggests a replacement for the existing technique selection 
tables of the IEC 61508 standard. 

1 Introduction 
Like many software standards for safety-related industries, 
the IEC 61508 standard for generic programmable-electronic 
safety-related systems [6] employs the concept of safety 
integrity levels (SILs), whereby the level of criticality of the 
software is used to determine aspects of the software 
development process, and, in particular, the extent of the 
verification and validation (V&V) effort deemed appropriate. 
The standard requires that each safety function is allocated to 
one of four SILs, with SIL 1 being the lowest and SIL 4 being 
the highest. The SILs themselves are defined in terms of 
ranges for the average probability of failure on demand (pfd) 
for a low demand mode of operation, or the probability of a 
dangerous failure per hour for a high demand or continuous 
mode of operation (see Table 1). Appropriate V&V 
techniques are then selected for the chosen SIL from tables of 
techniques having varying strengths of recommendation, 
namely: highly recommended (HR), recommended (R), not 
recommended either for or against (–), not recommended 
(NR). See Table 2 for the IEC 61508 recommendations for 
the activity of code verification. Some of the techniques (e.g. 
static analysis) are decomposed into sub-techniques that are 
listed in further similar tables. However, it is not immediately 
obvious how use of a particular set of techniques relates to the 
target failure probability. 

The advantage of the new SIL scheme proposed here is that 
the selection of V&V techniques becomes much more 
obvious and, what is more, underpinning it there are reasoned 

principles that justify that selection. Thus, for a given 
application, it is possible to consider the types of faults that 
might be present and provide a safety case which argues that 
the set of validation techniques has a high probability of 
detecting all of those faults. Moreover, it is possible to argue 
that specific sets of techniques have this property over wide 
classes of applications. All the current techniques of static 
analysis, dynamic analysis and formal methods sit neatly into 
the concepts. A comprehensive discussion of these ideas can 
be found elsewhere [4]; this paper concentrates mainly on 
their relationship to IEC 61508. 
 
 

SIL Low demand mode: 
average probability 
of failure on demand 

High demand or 
continuous mode: 

probability of dangerous 
failure per hour 

1 ≥ 10-2 to < 10-1 ≥ 10-6 to < 10-5 
2 ≥ 10-3 to < 10-2 ≥ 10-7 to < 10-6 
3 ≥ 10-4 to < 10-3 ≥ 10-8 to < 10-7 
4 ≥ 10-5 to < 10-4 ≥ 10-9 to < 10-8 

 
Table 1: Definition of IEC 61508 SILs. 

 
 

Technique SIL 1 SIL 2 SIL 3 SIL 4 
Formal proof – R R HR 
Probabilistic testing – R R HR 
Static analysis R HR HR HR 
Dynamic analysis and testing R HR HR HR 
Software complexity metrics R R R R 

 
Table 2: IEC 61508 recommendations for code verification. 

 

2 Terminology 
First, the distinction is made between errors, faults, failures 
and defects. The essence of the definitions for errors, faults 
and failures, as standardised by the IEEE [5] will be followed, 
since these have been widely adopted by the software 
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engineering community. The definition of a defect seems less 
widely agreed upon. Here, the class of defects will be 
regarded as a broader class of problems than faults since it 
may also include deviations from some extra rules, such as a 
well-defined, safe language subset [3] as may be found in the 
MISRA C standard [9] for example. 
 

• An error is a mistake made by a person when 
developing a software system. For example, it might 
be a misunderstanding of what is required of the 
software, so that the statement of requirements is 
incorrect, or it might be a mistake when translating a 
design into actual program code. 

 
• A fault is a deviation in some software-related 

artefact, most usually the program code, from what 
is required of it in order to provide correct 
functioning behaviour. 

 
• A failure is the manifestation of a fault, when faulty 

software is executed under conditions that cause the 
fault to be observed. 

 
• A defect is a deviation in some software artefact 

from what is required either for correct behaviour or 
to satisfy some additional criterion that is imposed 
upon the representation. 

3 Defect spanning sets 
A defect spanning set (DSS) is a set of one or more V&V 
techniques that collectively have the potential to detect the 
totality of all defects in the system under test. In practice, it is 
impossible to demonstrate that any set is exactly a DSS, but 
elsewhere [4] the authors have used two approaches to 
overcome this problem: firstly, reasoned argument and 
secondly, actual experience. 

The most obvious source of V&V techniques to form a DSS 
is to combine those techniques which generally come under 
the title of static analysis and formal methods. Such a 
collection is application dependent because a DSS is an 
application-dependent concept. There is, for instance, no need 
to include a technique to detect those defects which cannot 
appear in the software. In general, unit testing tends to be a 
defect detection technique. 

4 Fault spanning sets 
A fault spanning set (FSS) is a set of one or more V&V 
techniques that have the potential to detect the totality of all 
faults in a system under test. Given that the set of defects 
includes the set of faults, it should be clear that a DSS is also 
an FSS, but not the converse. As with the notion of a DSS, the 
FSS concept represents an ideal whose achievement may be 
impossible to demonstrate. Nonetheless, close approximations 
may well be achievable. 

The authors have identified two potential FSSs in addition to 
the one DSS mentioned in the previous section. They are 

dynamic analysis with high coverage levels and statistical 
testing. Dynamic analysis has a good track record as a fault-
finding mechanism, but statistical testing is normally used to 
demonstrate the absence of faults or at least to show that they 
have a low probability of occurring. 

That either of these two possibilities is independent of the 
DSS is probably not contentious, but it is not clear to what 
extent they can be considered to be mutually independent. 
The basis underlying each is, in principle, quite different. In 
dynamic analysis one attempts to construct test data which 
explores the requirements to the extent that certain structural 
coverage metrics are met whereas the statistical testing 
strategy samples from a model of use to produce test data 
which is representative of the actual inputs to the system, i.e. 
an operational profile [10, 11]. Both techniques need 
knowledge of the requirements of the system but with a 
different emphasis. That there is some independence, 
particularly if they are performed by different groups, is again 
probably uncontentious; it is only the extent to which they 
might be considered to be independent that is an issue. 

5 SIL scheme proposal 
This section outlines the proposed scheme for safety integrity 
levels; it is comprised of five levels with SIL 0 being the 
lowest and SIL 4 being the highest. The proposal is based on 
the concept of fault spanning sets, as just introduced, together 
with the familiar notion of redundancy. Triple redundancy has 
always been seen as the ideal for safety-critical hardware, and 
so the same notion has provided the rationale for these 
definitions of SILs for safety-critical software. 
 

SIL 0: This level is for software systems having no 
criticality at all, so there are no dependability 
requirements. 

 
SIL 1: This level is for software systems that should 

possess high dependability, but are not critical. 
Such systems require a high degree of checking. 
A demonstration of conformance to 
requirements is required. 

 
SIL 2: This level is for software systems that are, in 

some sense, critical and must have a 
demonstration that all fault types have been 
checked. At least one FSS must be applied. 

 
SIL 3: This level is for software systems that are 

mission-critical or safety-related. Here, a high 
level of certainty is required, so the principle of 
redundancy is applied. In other words, at least 
two independent FSSs must be used to check for 
the presence of each type of fault. 

 
SIL 4: This level is for software systems that are 

safety-critical. Here, at least three independent 
FSSs must be used to check for the presence of 
each type of fault. 



 
High SILs demand that the requirements are checked 
thoroughly, preferably by several mechanisms. The basis of 
the proposal is that three of the levels (namely SILs 2, 3 and 
4) should be satisfied by exploiting from one to three 
independent FSSs. In principle, any one of the FSSs should be 
appropriate for SIL 2, but there is the additional constraint 
that there should be a demonstration that the software 
performs according to its requirements. This constraint is 
normally discharged by executing the software with high 
quality test data that may well constitute an FSS itself. That 
being the case, it is therefore sensible practice to utilise the 
one FSS for both tasks. With regard to SIL 1, there is again a 
need to demonstrate conformity with requirements, although 
the achievement of a high level of dependability is not 
paramount. 

For SIL 3 the requirement is for two FSSs. This, therefore, 
suggests that two out of the three primary FSSs should be 
used. A common sense strategy is to use static analysis as one 
and dynamic analysis as the other, as required, for example, 
in Def-Stan 00-55 [8] that mandates use of both approaches. 
The use of dynamic analysis and statistical testing is possible, 
though this does place total reliance exclusively on dynamic 
approaches. The combination of static analysis and statistical 
testing tends to leave more uncertainty with respect to the 
possibility of residual faults in the binaries: this is because 
statistical testing may result in poor coverage of infrequently-
used portions of code, thereby putting more reliance on static 
analysis to detect any faults in those regions. Finally, for SIL 
4, all three FSSs must be used, to achieve the best possible 
likelihood of discovering all faults. 

The approach outlined above is to be contrasted with other 
SIL schemes. In the proposal here, the reasoning is that all 
faults should be detectable at each of the three critical SIL 
levels. Then, because of uncertainties in the completeness of 
any given FSS, diversity is exploited by using more than one 
FSS. Other SIL schemes drop techniques, and hence the 
ability to detect their associated types of faults, as one goes 
down through the levels. 

6 Relationship to reliability 
Consider the use of three FSSs as proposed for SIL 4 in the 
new scheme. Let pi be the probability of failure achieved by 
use of the ith FSS. Then, assuming the three FSSs are 
independent, the resultant probability of failure will be         
p1 × p2 × p3. If, for example, each pi individually is 10-2 the 
resultant combined probability has the improved value of    
10-6. 

Of course, estimating the pi that results from using each of the 
three FSSs is likely to be a very difficult task. For dynamic 
analysis, tentative steps have been taken to provide a formula 
relating reliability to the value of given coverage metrics [13]. 
For static analysis and formal methods, analysis of the 
evidence from a number of substantial case studies [14, 12] 
may be the route to suitable estimates. Statistical testing by 
definition can be used to determine reliability [7]. 

A further possible approach results from consideration of the 
DO-178B standard for civil avionics software [2]. An 
argument can be presented [4] that the V&V techniques 
inherent in DO-178B must be reasonably close to forming 
two FSSs, one being dynamic analysis and the other basically 
being static analysis. It is evident from experience that the 
DO-178B standard is very effective and possibly the achieved 
reliability is close to the level required by the equivalent SILs 
in IEC 61508. 

7 Comparison with IEC 61508 
The principle problem with IEC 61508 [6], and indeed also 
with DO-178B [2], is that as the criticality of the software 
rises, new techniques are required to be applied. Yet these 
new techniques discover specific classes of defects and there 
is no reason advanced as to why these faults are less 
significant for the lower SIL software. The underlying 
philosophy is more that as the criticality rises, the reasons for 
avoiding the more onerous techniques become less 
significant. 

The current proposal is that the new SILs are assumed to be 
equivalent to the levels in IEC 61508 but equally they could 
be considered to equivalent to the levels of DO-178B with its 
level A being comparable to the SIL 4 of Section 5 and its 
level E being comparable to SIL 0. 

The proposal advocated in this paper is based on the need to 
reduce faults in all software and still have some assurance that 
the number of residual faults in higher-criticality software is 
reducing. 

 

8 Future developments 
The principal problem with the new proposal is that there is 
still no clear relationship between the proposed SILs and the 
requirement for specific levels of reliability or dependability. 
However, Section 6 has provided some indication of avenues 
for further exploration. 

Other problems are related to the claim that a given set of 
techniques is, or is not, a close approximation to a defect 
spanning set or a fault spanning set. Proving that a set of 
techniques is not an FSS is considerably easier, but obviously, 
as more techniques are included, this gets more difficult. 
However, a failure to find a fault does not necessarily imply 
that the techniques used constitute an FSS. 

As an example, suppose one wished to assess how close the 
dynamic analysis requirement of DO-178B was to being an 
FSS. At the highest SIL, modified condition/decision 
coverage (MC/DC) [1] is required. It would be possible to 
conduct an empirical study to determine how effective 
MC/DC-adequate test data was at detecting mutation-
generated faults. As far as the current authors are aware, no 
such study has yet been performed. 



9 Conclusions 
The authors have presented a reasoned case for revising the 
basis on which safety integrity levels for safety-critical, 
safety-related and mission-critical software are apportioned to 
fault and defect detection techniques. 

The proposal has the basis of some scientific underpinning 
and looks capable of further development. The three proposed 
FSSs are practicable, in that they have all been used in some 
form over many years, and they have the merit that the only 
issue to be decided for a given project is whether they have 
the capability of finding the faults which might be present in 
the software. It is also possible to conceive that a generic set 
of V&V techniques exist which will detect the faults in most 
classes of software. These can then be augmented by specific 
techniques which will expose those faults which might be 
present in special classes of software. 
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