
THE SAFETY INTEGRITY LEVELS OF IEC 61508 AND A
REVISED PROPOSAL

M. A. Hennell1, J. C. P. Woodcock2 and M. R. Woodward3

1 LDRA Ltd., Portside, Monks Ferry, Wirral CH41 5LH, U.K.
E-mail: michael.hennell@ldra.com, Tel: +44 (0)151 649 9300, Fax: +44 (0)151 649 9666

2 Department of Computer Science, University of York, Heslington, York YO1 5DD, U.K.

3 Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, Liverpool L69 3BX,

U.K.

Keywords: standards, safety integrity levels, defect spanning
sets, fault spanning sets.

Abstract
The paper proposes a new scheme for safety integrity levels
(SILs) based on reasoned principles. The scheme provides a
mechanism for selecting appropriate verification and
validation techniques for a given SIL and, in particular,
suggests a replacement for the existing technique selection
tables of the IEC 61508 standard.

1 Introduction
Like many software standards for safety-related industries,
the IEC 61508 standard for generic programmable-electronic
safety-related systems [6] employs the concept of safety
integrity levels (SILs), whereby the level of criticality of the
software is used to determine aspects of the software
development process, and, in particular, the extent of the
verification and validation (V&V) effort deemed appropriate.
The standard requires that each safety function is allocated to
one of four SILs, with SIL 1 being the lowest and SIL 4 being
the highest. The SILs themselves are defined in terms of
ranges for the average probability of failure on demand (pfd)
for a low demand mode of operation, or the probability of a
dangerous failure per hour for a high demand or continuous
mode of operation (see Table 1). Appropriate V&V
techniques are then selected for the chosen SIL from tables of
techniques having varying strengths of recommendation,
namely: highly recommended (HR), recommended (R), not
recommended either for or against (–), not recommended
(NR). See Table 2 for the IEC 61508 recommendations for
the activity of code verification. Some of the techniques (e.g.
static analysis) are decomposed into sub-techniques that are
listed in further similar tables. However, it is not immediately
obvious how use of a particular set of techniques relates to the
target failure probability.

The advantage of the new SIL scheme proposed here is that
the selection of V&V techniques becomes much more
obvious and, what is more, underpinning it there are reasoned

principles that justify that selection. Thus, for a given
application, it is possible to consider the types of faults that
might be present and provide a safety case which argues that
the set of validation techniques has a high probability of
detecting all of those faults. Moreover, it is possible to argue
that specific sets of techniques have this property over wide
classes of applications. All the current techniques of static
analysis, dynamic analysis and formal methods sit neatly into
the concepts. A comprehensive discussion of these ideas can
be found elsewhere [4]; this paper concentrates mainly on
their relationship to IEC 61508.

SIL Low demand mode:
average probability
of failure on demand

High demand or
continuous mode:

probability of dangerous
failure per hour

1 ≥ 10-2 to < 10-1 ≥ 10-6 to < 10-5
2 ≥ 10-3 to < 10-2 ≥ 10-7 to < 10-6
3 ≥ 10-4 to < 10-3 ≥ 10-8 to < 10-7
4 ≥ 10-5 to < 10-4 ≥ 10-9 to < 10-8

Table 1: Definition of IEC 61508 SILs.

Technique SIL 1 SIL 2 SIL 3 SIL 4
Formal proof – R R HR
Probabilistic testing – R R HR
Static analysis R HR HR HR
Dynamic analysis and testing R HR HR HR
Software complexity metrics R R R R

Table 2: IEC 61508 recommendations for code verification.

2 Terminology
First, the distinction is made between errors, faults, failures
and defects. The essence of the definitions for errors, faults
and failures, as standardised by the IEEE [5] will be followed,
since these have been widely adopted by the software

mailto:michael.hennell@ldra.com

engineering community. The definition of a defect seems less
widely agreed upon. Here, the class of defects will be
regarded as a broader class of problems than faults since it
may also include deviations from some extra rules, such as a
well-defined, safe language subset [3] as may be found in the
MISRA C standard [9] for example.

• An error is a mistake made by a person when
developing a software system. For example, it might
be a misunderstanding of what is required of the
software, so that the statement of requirements is
incorrect, or it might be a mistake when translating a
design into actual program code.

• A fault is a deviation in some software-related

artefact, most usually the program code, from what
is required of it in order to provide correct
functioning behaviour.

• A failure is the manifestation of a fault, when faulty

software is executed under conditions that cause the
fault to be observed.

• A defect is a deviation in some software artefact

from what is required either for correct behaviour or
to satisfy some additional criterion that is imposed
upon the representation.

3 Defect spanning sets
A defect spanning set (DSS) is a set of one or more V&V
techniques that collectively have the potential to detect the
totality of all defects in the system under test. In practice, it is
impossible to demonstrate that any set is exactly a DSS, but
elsewhere [4] the authors have used two approaches to
overcome this problem: firstly, reasoned argument and
secondly, actual experience.

The most obvious source of V&V techniques to form a DSS
is to combine those techniques which generally come under
the title of static analysis and formal methods. Such a
collection is application dependent because a DSS is an
application-dependent concept. There is, for instance, no need
to include a technique to detect those defects which cannot
appear in the software. In general, unit testing tends to be a
defect detection technique.

4 Fault spanning sets
A fault spanning set (FSS) is a set of one or more V&V
techniques that have the potential to detect the totality of all
faults in a system under test. Given that the set of defects
includes the set of faults, it should be clear that a DSS is also
an FSS, but not the converse. As with the notion of a DSS, the
FSS concept represents an ideal whose achievement may be
impossible to demonstrate. Nonetheless, close approximations
may well be achievable.

The authors have identified two potential FSSs in addition to
the one DSS mentioned in the previous section. They are

dynamic analysis with high coverage levels and statistical
testing. Dynamic analysis has a good track record as a fault-
finding mechanism, but statistical testing is normally used to
demonstrate the absence of faults or at least to show that they
have a low probability of occurring.

That either of these two possibilities is independent of the
DSS is probably not contentious, but it is not clear to what
extent they can be considered to be mutually independent.
The basis underlying each is, in principle, quite different. In
dynamic analysis one attempts to construct test data which
explores the requirements to the extent that certain structural
coverage metrics are met whereas the statistical testing
strategy samples from a model of use to produce test data
which is representative of the actual inputs to the system, i.e.
an operational profile [10, 11]. Both techniques need
knowledge of the requirements of the system but with a
different emphasis. That there is some independence,
particularly if they are performed by different groups, is again
probably uncontentious; it is only the extent to which they
might be considered to be independent that is an issue.

5 SIL scheme proposal
This section outlines the proposed scheme for safety integrity
levels; it is comprised of five levels with SIL 0 being the
lowest and SIL 4 being the highest. The proposal is based on
the concept of fault spanning sets, as just introduced, together
with the familiar notion of redundancy. Triple redundancy has
always been seen as the ideal for safety-critical hardware, and
so the same notion has provided the rationale for these
definitions of SILs for safety-critical software.

SIL 0: This level is for software systems having no
criticality at all, so there are no dependability
requirements.

SIL 1: This level is for software systems that should

possess high dependability, but are not critical.
Such systems require a high degree of checking.
A demonstration of conformance to
requirements is required.

SIL 2: This level is for software systems that are, in

some sense, critical and must have a
demonstration that all fault types have been
checked. At least one FSS must be applied.

SIL 3: This level is for software systems that are

mission-critical or safety-related. Here, a high
level of certainty is required, so the principle of
redundancy is applied. In other words, at least
two independent FSSs must be used to check for
the presence of each type of fault.

SIL 4: This level is for software systems that are

safety-critical. Here, at least three independent
FSSs must be used to check for the presence of
each type of fault.

High SILs demand that the requirements are checked
thoroughly, preferably by several mechanisms. The basis of
the proposal is that three of the levels (namely SILs 2, 3 and
4) should be satisfied by exploiting from one to three
independent FSSs. In principle, any one of the FSSs should be
appropriate for SIL 2, but there is the additional constraint
that there should be a demonstration that the software
performs according to its requirements. This constraint is
normally discharged by executing the software with high
quality test data that may well constitute an FSS itself. That
being the case, it is therefore sensible practice to utilise the
one FSS for both tasks. With regard to SIL 1, there is again a
need to demonstrate conformity with requirements, although
the achievement of a high level of dependability is not
paramount.

For SIL 3 the requirement is for two FSSs. This, therefore,
suggests that two out of the three primary FSSs should be
used. A common sense strategy is to use static analysis as one
and dynamic analysis as the other, as required, for example,
in Def-Stan 00-55 [8] that mandates use of both approaches.
The use of dynamic analysis and statistical testing is possible,
though this does place total reliance exclusively on dynamic
approaches. The combination of static analysis and statistical
testing tends to leave more uncertainty with respect to the
possibility of residual faults in the binaries: this is because
statistical testing may result in poor coverage of infrequently-
used portions of code, thereby putting more reliance on static
analysis to detect any faults in those regions. Finally, for SIL
4, all three FSSs must be used, to achieve the best possible
likelihood of discovering all faults.

The approach outlined above is to be contrasted with other
SIL schemes. In the proposal here, the reasoning is that all
faults should be detectable at each of the three critical SIL
levels. Then, because of uncertainties in the completeness of
any given FSS, diversity is exploited by using more than one
FSS. Other SIL schemes drop techniques, and hence the
ability to detect their associated types of faults, as one goes
down through the levels.

6 Relationship to reliability
Consider the use of three FSSs as proposed for SIL 4 in the
new scheme. Let pi be the probability of failure achieved by
use of the ith FSS. Then, assuming the three FSSs are
independent, the resultant probability of failure will be
p1 × p2 × p3. If, for example, each pi individually is 10-2 the
resultant combined probability has the improved value of
10-6.

Of course, estimating the pi that results from using each of the
three FSSs is likely to be a very difficult task. For dynamic
analysis, tentative steps have been taken to provide a formula
relating reliability to the value of given coverage metrics [13].
For static analysis and formal methods, analysis of the
evidence from a number of substantial case studies [14, 12]
may be the route to suitable estimates. Statistical testing by
definition can be used to determine reliability [7].

A further possible approach results from consideration of the
DO-178B standard for civil avionics software [2]. An
argument can be presented [4] that the V&V techniques
inherent in DO-178B must be reasonably close to forming
two FSSs, one being dynamic analysis and the other basically
being static analysis. It is evident from experience that the
DO-178B standard is very effective and possibly the achieved
reliability is close to the level required by the equivalent SILs
in IEC 61508.

7 Comparison with IEC 61508
The principle problem with IEC 61508 [6], and indeed also
with DO-178B [2], is that as the criticality of the software
rises, new techniques are required to be applied. Yet these
new techniques discover specific classes of defects and there
is no reason advanced as to why these faults are less
significant for the lower SIL software. The underlying
philosophy is more that as the criticality rises, the reasons for
avoiding the more onerous techniques become less
significant.

The current proposal is that the new SILs are assumed to be
equivalent to the levels in IEC 61508 but equally they could
be considered to equivalent to the levels of DO-178B with its
level A being comparable to the SIL 4 of Section 5 and its
level E being comparable to SIL 0.

The proposal advocated in this paper is based on the need to
reduce faults in all software and still have some assurance that
the number of residual faults in higher-criticality software is
reducing.

8 Future developments
The principal problem with the new proposal is that there is
still no clear relationship between the proposed SILs and the
requirement for specific levels of reliability or dependability.
However, Section 6 has provided some indication of avenues
for further exploration.

Other problems are related to the claim that a given set of
techniques is, or is not, a close approximation to a defect
spanning set or a fault spanning set. Proving that a set of
techniques is not an FSS is considerably easier, but obviously,
as more techniques are included, this gets more difficult.
However, a failure to find a fault does not necessarily imply
that the techniques used constitute an FSS.

As an example, suppose one wished to assess how close the
dynamic analysis requirement of DO-178B was to being an
FSS. At the highest SIL, modified condition/decision
coverage (MC/DC) [1] is required. It would be possible to
conduct an empirical study to determine how effective
MC/DC-adequate test data was at detecting mutation-
generated faults. As far as the current authors are aware, no
such study has yet been performed.

9 Conclusions
The authors have presented a reasoned case for revising the
basis on which safety integrity levels for safety-critical,
safety-related and mission-critical software are apportioned to
fault and defect detection techniques.

The proposal has the basis of some scientific underpinning
and looks capable of further development. The three proposed
FSSs are practicable, in that they have all been used in some
form over many years, and they have the merit that the only
issue to be decided for a given project is whether they have
the capability of finding the faults which might be present in
the software. It is also possible to conceive that a generic set
of V&V techniques exist which will detect the faults in most
classes of software. These can then be augmented by specific
techniques which will expose those faults which might be
present in special classes of software.

Acknowledgements
This work has been financially supported by British Energy
Generation Ltd, British Energy Generation (UK) Ltd, British
Nuclear Group (Magnox) and British Nuclear Group,
Management Services, Sellafield. It has been managed by the
Control & Instrumentation Nuclear Industry Forum (CINIF).

References

[1] J.J. Chilenski, S.P. Miller. “Applicability of modified

condition/decision coverage to software testing”,
Software Engineering Journal, 9(5), pp. 193-200,
(1994).

[2] European Organisation for Civil Aviation Equipment.

Software Considerations in Airborne Systems and
Equipment Certification (ED-12B/DO-178B),
EUROCAE, 17 rue Hamelin, F-75783 Paris Cedex 16,
France, (1992). Available at http://www.eurocae.org

[3] L. Hatton. “Safer language subsets: an overview and a

case history, MISRA C”, Information and Software
Technology, 46(7), pp. 465-472, (2004).

[4] M.A. Hennell, J.C.P. Woodcock, M.R. Woodward. “A

proposal for software safety integrity levels based on
fault spanning sets and principles of redundancy”,
Submitted for publication, (2006).

[5] Institute of Electrical and Electronic Engineers, IEEE

Standard Glossary of Software Engineering
Terminology, IEEE Std 610.12-1990, Corrected Edition,
IEEE, New York, (February 1991).

[6] International Electrotechnical Commission, Functional

Safety of Electrical / Electronic / Programmable
Electronic Safety-related Systems (IEC 61508),
International Electrotechnical Commission, 3 rue de

Varembé, Geneva, Switzerland, (1998). Available at
http://www.iec.org.ch

[7] S. Kuball, J. May. “Test-adequacy and statistical testing:

Combining different properties of a test-set”,
Proceedings of the 15th International Symposium on
Software Reliability Engineering, St. Malo, France,
November 2004. IEEE Computer Society Press: Los
Alamitos, California; pp. 25-34.

[8] U.K. Ministry of Defence. Defence Standard 00-55:

Requirements for Safety Related Software in Defence
Equipment, Issue 2, (August 1997). Available at
http://www.dstan.mod.uk/

[9] Motor Industry Software Reliability Association,

Guidelines for the Use of the C Language in Vehicle
Based Software, Motor Industry Research Association,
Watling Street, Nuneaton, Warwickshire CV10 0TU,
U.K., (1998). Available at http://www.misra.org.uk

[10] J.D. Musa. “Operational profiles in software-reliability

engineering”, IEEE Software, 10(2), pp. 14-32, (1993).

[11] J. Musa, G. Fuoco, N. Irving, D. Kropfl, B. Juhlin. “The

operational profile”, Chapter 5 in Handbook of Software
Reliability Engineering, M.R. Lyu (Ed.), McGraw-Hill:
New York; pp. 167-216, (1996).

[12] S.L. Pfleeger, L. Hatton. “Investigating the influence of

formal methods”, IEEE Computer, 30(2), pp. 33-43,
(1997).

[13] A. Veevers, A.C. Marshall. “A relationship between

software coverage metrics and reliability”, Software
Testing, Verification and Reliability, 4(1), pp. 3-8,
(1994).

[14] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J.P.

Hudepohl, M.A. Vouk. “On the value of static analysis
for fault detection in software”, IEEE Transactions on
Software Engineering, 32(4), pp. 240-253, (2006).

http://www.eurocae.org
http://www.iec.org.ch
http://www.dstan.mod.uk/
http://www.misra.org.uk

